
© 2003 Bill Sequeira/Axon Hillock Patch Notation

Modular Patch Notation (MPN) Explained
Rev: 030926

Overview. The modular patch notation (MPN) introduced here
provides a method to describe analog modular synthesizer
patches. In MPN., a patch is composed of element structures
that describe control elements and their values (e.g. knobs,
switches, joysticks), signal flow through connection elements
(input and output jacks, adaptors, interfaces), and a hierarchy
of systems-modules-circuits (a domain hierarchy) to uniquely
locate specific elements.

Since large amounts of knobs and jacks are typical of modular
systems, MPN introduces shorthand mechanisms borrowed from
programming theory, such as blocks and dotting, to reduce the
written complexity of a patch, yielding a surprisingly compact
description.

MPN also allows for writing flexibility. This to address the
population that prefers a compact description over a long one,
vs. those who prefer a well-indented, cascading representation
using space as a visual aid for rapid interpretation of a patch
specification.

Domains. Domains are used to qualify the exact location of a
control or connection element. A domain is specified in dot
notation by concatenating names separated by “.”. A common
domain hierarchy would be

<studio>.<system>.<panel>.<module>.<circuit>

A domain hierarchy

 SkyStudio.Serge.Panel3.DualMixer.Mix2

uniquely identifies elements found “in studio SkyStudio, in
Panel3 of the Serge system, in the circuit Mix2 in module
DualMixer”. If Mix2 had a control for input 1 called INPUT1, such
control could then be uniquely identified by

SkyStudio.Serge.Panel3.DualMixer.Mix2.INPUT1

Element names and domain hierarchies are customized
(extended or reduced) to reflect your studio. In practice, most
patches are created within single systems, so there is rarely a
need to use <studio> and <system> in a domain hierarchy.

Element Structures. These are structures used to specify
control values and signal flow. Controls are specified by listing
the control names and their control values

Control [control1=value1, …, controlN=valueN]

Unmarked knob values are specified in standard hour notation
(e.g. 5, 7:30, 12). Switch values are specified using their
physical switch values. In general, for any control, values are
specified using their specific units of measure (e.g. sliders using
numbers, joysticks using x/y coordinates, etc.).

Signal flow is specified by listing jack output and jack input pairs
joined by the flow operator “->’”

Connect [output1->input1, …, outputN->inputN]

Domain dot notation can be used to qualify Control, Connect
and any control, input or output name. For example,

Wog1.Control[LFO RATE=5]

reads “control LFO RATE in circuit Wog1 should be set to a 5pm
position”; an equivalent notation would be

Control[Wog1.LFO RATE=5]

The duality of this example illustrates the power of domain dot
notation: if the entire control element list is in the same locality,
then qualify Control. But single elements can be qualified as
well. In practice, it is easiest to qualify the element structure
rather than doing it for each control name in the list. By the
way, the same rational applies to connection structures. The
same is true for connect structures

Wog1.Connect[STEP CV -> RATE]

which reads “a patch cord is connected from output MIX in
circuit Wog1 to input RATE in circuit Wog1”.

Element sets can be created by surrounding the set within
parenthesis. Element sets are useful to assign all members the
same value, input or output. A good example would be

Control[(RATE, LFO)=12]
Connect[OUT1 -> (RATE, IN2)]

Patches. Element structures are grouped under a structure
called a patch. Joining the above examples

Wog1.Control[LFO RATE=5]
Wog1.Connect[STEP CV -> RATE]

describes a patch. From both structures it is clear that LFO
RATE, MIX, and RATE are located in the same domain
(circuit)Wog1. With a shortcut, the example can be notated as

Top Wog1
Control[LFO RATE=5]
Connect[STEP CV ->RATE]

The keyword Top is used to specify the domain where all
elements in a patch are located. If an element is not qualified,
it can be found within Top. In general, to determine the correct
qualification of an element, follow these precedence order:

1. Element name qualification
2. Element structure qualification
3. Top

Assuming two different Woggle Bug modules (WB1, WB2)

Top SkyStudio
WiardSystem.Connect

[WB1.Wog1.OUT1 -> WB2.Wog1.CLOCK,
WB2.Wog1.OUT1 -> +MON]

indicates that OUT1 and CLOCK are found in WB2, both WB1
and WB2 are found in WiardSystem, and that WiardSystem is

© 2003 Bill Sequeira/Axon Hillock Patch Notation

found in SkyStudio. This example also shows how the notation
can be spatially distributed to increase readability.

Patches can be named and used as blocks for building more
complex patches through the keyword Patch. All patch names
are specified in caps with a predecessor “+” in the name. The
notation assumes the existence of a primitive patch +MON
where +MON is a monitoring, amplification or speaker system
that enables sound to be heard. One definition could be

Patch +MON
Top GenelecMonitors
Control[VOLUME=10]

Building Complex Patches. If the patch is specified to
interface with others, the keywords IN, used by a patch to
describe incoming signals from external patches, and OUT, for
outgoing signals, are used to specify an external interface. So
the above patch can be modified to

Patch +MON
Top GenelecMonitors
IN LEFT, RIGHT
Control[VOLUME=10]

to indicate that any incoming signal connected to +MON should
be routed to inputs LEFT, RIGHT in GenelecMonitors. No OUT
is required in this case. Dot notation can be used to qualify the
signal flow, so that outputs are routed to specific inputs in other
patches.

WoggleBug.Connect
[OUT1-> +MON.LEFT, OUT2-> +MON.RIGHT]

A patch can also be constructed as a modification of an existing
one via the keyword Initial. For example

Patch +MODIFIED HELLO WORLD
Initial +HELLO WORLD
Control[LFO RATE=12]

specifies that +MODIFIED HELLO WORLD starts from the values
and connections of +HELLO WOLD, with a modification to LFO
RATE from a value of 5pm to a value of 12 noon.

Other. More useful shortcuts to reduce the amount of writing:

o All elements do not need to be specified. It is common in
modulars to have controls, inputs and outputs that are
irrelevant to a patch. In this case, omit all superfluous
elements.

o Comments can be added by using “- -“ or by using the
keyword Comment.

o Other common blocks used to speed up notation:

o KBD.CV – Keyboard Control Voltage (pitch) output
o KBD.GATE – Keyboard Gate (trigger) output
o +ENVELOPE – external envelope signal output
o +OSCILLATOR – external sound source output
o +LFO – external LFO output
o JOYSTICK.X – x output of a joystick
o JOYSTICK.Y – y output of a joystick

Conclusion. MPN is capable of specifying very complex
patches in very complex situations. MPN eases the task of
describing analog modular programming techniques among

interested parties. Manufacturers, novices and experienced
programmers can benefit alike.

In practice, only a fraction of a signal flow needs to be specified,
so patches will tend to be relatively small.

Thanks to Grant Richter for his interest and valuable comments.
Improvements? Email me at

bill@axonhillock.com

Enjoy and share your modular knowledge! Feel free to modify
MPN as you see fit. Peace be with you.

Bill Sequeira

